

17CS34

Third Semester B.E. Degree Examination, June/July 2019 Computer Organization

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Write the basic performance equation. Explain the role of each of the parameters in the equation of the performance of the computer. (04 Marks)
 - b. Draw and explain the connections between the processor and the main memory. (08 Marks)
 - c. Write a program to evaluate the arithmetic statement Y = (A + B) * (C + D) using three address, two-adderss, one-address and zero address instructions. (08 Marks)

OR

- 2 a. What is an addressing mode? Explain any four addressing modes with examples. (08 Marks)
 - b. Explain the concept of stack frames, when subroutines are nested. (06 Marks)
 - c. Explain the shift and rotate operations with examples.

(06 Marks)

Module-2

- 3 a. Give comparison between memory mapped I/O and I/O mapped I/O. (04 Marks)
 - b. Explain the following methods of handling interrupts from multiple devices.
 - i) Interrupt nesting /priority structure
 - ii) Daisy chain method

- (08 Marks)
- c. What is bus arbitration? Explain distributed arbitration with a neat diagram.

(08 Marks)

OR

- 4 a. Draw neat timing diagrams and explain
 - i) Multicycle synchronous bus transfer for a read operation.
 - ii) Asynchronous bus transfer for a write operation.

(12 Marks)

- b. Explain the following with respect to USB.
 - i) USB architecture
 - ii) USB addressing.

(08 Marks)

Module-3

- 5 a. With a neat diagram, explain the internal organization of a 2M × 8 dynamic memory chip.
 - b. Distinguish between SRAM and DRAM.

(08 Marks) (04 Marks)

c. Describe any two mapping functions in cache.

(08 Marks)

OR

- 6 a. What is virtual memory? With a diagram, explain how virtual memory address is translated?
 (08 Marks)
 - b. Define the following:
 - i) Memory latency ii) Memory bandwidth iii) Hit-rate iv) Miss-penalty. (04 Marks)
 - c. Describe the working principle of a typical magnetic disk.

(08 Marks)

42+8 = 50, will be treated as malpractice. remaining blank pages. Any revealing of identification, appeal to evaluator and /or equations written eg, Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the

17CS34

Module-4

Convert the following pairs of decimal numbers to 5-bit signed 2's complement binary numbers and add them. State whether overflow has occurred. (06 Marks) i) -5 and 7 ii) -10 and -13 iii) -14 and 11.

b. Draw 4-bit carry-look ahead adder and explain.

(06 Marks) (08 Marks)

Explain Booth's algorithm, multiply +15 and -6 using Booth's multiplication.

Explain the concept of carry-save addition for the multiplication operation $M \times Q = P$ for (08 Marks) 4-bit operands, with diagram and suitable example.

b. Explain IEEE standard for floating - point numbers.

(06 Marks)

Perform the non-restoring division for 8 ÷ 3 by showing all the steps.

(06 Marks)

Module-5

Draw and explain multiple bus organization of CPU. And write the control sequence for the 9 instruction Add R4, R5, B6 for the multiple bus organization. (10 Marks)

b. Explain with block diagram the basic organization of a micro programmed control unit.

(10 Marks)

With block diagram, explain the working of a microwave oven. (10 Marks) 10

Explain the structure of general-purpose multiprocessors with diagrams. (10 Marks)